
Structuring a Vulnerability Description for
Comprehensive Single System Security Analysis

Malgorzata Urbanska, Indrajit Ray, Adele E. Howe, Mark Roberts
Computer Science Department

Colorado State University
Fort Collins, CO 80523 U.S.A.

Email: {urbanska, indrajit, howe, mroberts}@CS.ColoState.EDU

Abstract—The National Vulnerability Database (NVD) pro-
vides unstructured descriptions of computer security vulnerabil-
ities. These descriptions do not directly provide the information
necessary to formally analyze how the user’s and the attacker’s
actions lead to the exploit. Moreover, the descriptions vary in
how they describe the vulnerabilities. In this paper, we describe a
system for automatically extracting cause and effect information
from a set of vulnerabilities. The result is a structured data
set of vulnerability descriptions with pre- and post-condition
relationships. We evaluate the system by comparing the output
with a manually constructed representation for security analysis
called the Personalized Attack Graph (PAG).

Index Terms—security risk modeling, attack graphs, system
security, attacks and defenses

I. SECURITY ANALYSIS FOR A SINGLE COMPUTER SYSTEM

To secure a computer system, we have to know which vul-
nerabilities exist on the system and how they can be exploited.
Vulnerability Scanners (VS) perform a security audit of a
network/system to identify their weak spots. However, VSs
simply scan the network/system, identify the weaknesses and
match them against known vulnerabilities. They create a report
that groups identified vulnerabilities into sets and gives some
advice about how to fix these vulnerabilities. This information
is not enough because the existence of a vulnerability does not
mean that it can be exploited. Hence, the VS report can be
challenging to apply, even for experienced security managers.

Vulnerabilities are exploited via sequences of events (actions
on the part of users and attackers); so to understand whether
a vulnerability can be exploited for a given system, one needs
to know the sequence. However, the standard resource for
capturing vulnerability information, Vulnerability Databases ,
contain textual descriptions, which do not necessarily describe
the chain of events that lead to an exploit. In this work, we
show how to transform such a textual vulnerability description
into a more structured one that clearly identifies the pre- and
post-conditions of the vulnerability that are needed for an
security analysis of a single host.

One of the common models used to reason about the
security risk in a network/system is attack graphs (AGs) [1]–
[6]. AGs graphically capture all the possible ways in which
a network/system can be attacked. They help to analyze the
possible attack scenarios by showing a relationship between
the vulnerabilities and the network/system configuration. Most
AGs are based on the assumption of connectivity between

hosts in the network. Assuming a host A with vulnerability
VA is connected to host B with vulnerability VB , then if
host A is compromised it implies that VB is exploitable and
hence host B can be compromised. For constructing AGs,
these connectivities are necessary conditions, but they are not
sufficient. This means that AGs cannot be really employed for
a single host security analysis. We have extended AGs to focus
on a single system. Our Personalized Attack Graph (PAG)
[7] model incorporates information about a single computer
system that facilities analysis of the necessary and sufficient
conditions for a vulnerability to be exploited on a single
host: the software installed on a system and the cause and
consequence of actions of both the user and the attacker.

Building PAGs manually can be time consuming and prone
to errors. Thus our goal is automate the process by structuring
vulnerability descriptions in terms of pre- and post-conditions
of user and attacker actions, as well as system configuration.
We must extract information such as: infected software, pre-
conditions (user actions, attacker strategies, and system ac-
tivities and configuration) and post-conditions of exploiting
particular vulnerability. In this paper we describe a system
for automatically extracting information from the National
Vulnerability Database (NVD) [8] for a set of vulnerabilities
identified by scanner OpenVAS [9]. We evaluate the results
by comparing the output with a manually constructed repre-
sentation.

II. VULNERABILITY INFORMATION

Jajodia et al. [2] built a system that automatically constructs
an AG from the information gathered by Nessus, an open
source network vulnerability scanner. This solution creates
an easy to understand graph, which represents the network’s
infrastructure. Williams et al. [6] use the Nessus scanner to
gain information about vulnerabilities present in hosts. The
AG is created and analyzed by a program written in C++.
However, both of these systems work only for network analysis
and cannot be applied to a single system because they are
based on host connectivities.

Le et al. [10] present Vulnerability Property Relationship
Graphs (VPRG), a formal model of web-based vulnerabilities,
represented as cause/consequence chains. However, the model
is constructed manually. Subsequently, Le et al. [11] present
an approach for automated extraction of the VPRG model



The EScript.api plugin in Adobe Reader and Acrobat 10.x
before 10.0.1, 9.x before 9.4.1, and 8.x before 8.2.6 on
Windows and Mac OS X allows remote attackers to execute
arbitrary code or cause a denial of service (application
crash) via a crafted PDF document that triggers memory
corruption, involving the printSeps function. NOTE: some of
these details are obtained from third party information.

Fig. 1. CVE-2010-4091 vulnerability description

from a plain text vulnerability description. The system relies
on a Natural Language Processing Tools Kit supported by a
“Dictionary of Terms and Relationships,” which is respon-
sible for providing the information about the relationships,
terms and concepts in the vulnerability descriptions. However,
constructing the dictionary requires significant effort and is
prone to errors. Each sentence is partitioned into entities (noun,
prepositional and verb phrases) and behavior (properties which
describe the functionality of the web-application), and restated
as a cause/consequence chain.

A. The National Vulnerability Database (NVD)

The NVD [8] is maintained by National Institute of Stan-
dards and Technology Computer Security Division, Infor-
mation Technology’s Laboratory and sponsored by the De-
partment of Homeland Security’s National Cyber Security
Division. The NVD combines the information from all govern-
ment and some commercial vulnerability resources. It offers a
comprehensive search capability, delivers necessary statistics,
and is updated hourly. The updates can be downloaded from
its web page http://nvd.nist.gov/download.cfm

The NVD is based on Common Vulnerability and Exposure
(CVE) names [12]. CVE names are distinct identifiers of
publicly known security vulnerabilities. A unique identifier
is assigned to each vulnerability or exposure by the CVE
Numbering Authority, which also posts them on the CVE
website. Figure 1 shows a plain text description taken from
the NVD entry CVE-2010-4091.

B. The Open Vulnerability Assessment System (OpenVas)

OpenVas [9] is an open source vulnerability scanning and
management system that provides a complete security analysis
by combining services and security tools. The security scanner
is supported by the daily updated feed of the Network Vul-
nerability Tests (NVTs), which is responsible for detection of
known and potential security vulnerabilities. OpenVas offers
over 25,000 NVTs (as of May 2012) and is available under
the GNU General Public License (GNU GPL).

III. SYSTEM DESIGN

Our objectives are to extract information about the necessary
conditions of exploiting a vulnerability and its consequences
from plain text vulnerability description. Similarly to [11]
we are using the dictionaries to guide the extraction process.
However, we store only the keywords such as the name of the
software and our approach is based on a set of rules.

Fig. 2. Information flow; red squares denote outside system information, blue
rounded rectangle are processes, and unclosed rectangles are data storage.

Figure 2 presents the information flow for our system to
convert NVD entries to a structured form. We use the NVD
as our source of textual vulnerability descriptions and the
OpenVAS scanner to identify vulnerabilities in a single host.
Similar to [2], [6], a computer is scanned, and an audit report
is created and parsed by the SAXparser. The output of this step
is a list of vulnerabilities. The CVE names are extracted from
this list; the vulnerability records for each are obtained from
the NVD in HTML form. The relevant vulnerability records
are extracted by the HTML parser. The result at this point is
a plain text vulnerability description. Further text processing
operations are done on this description by applying a set of
filters. The main goal of the filters is to extract necessary
causal information such as infected software names and action
pre-conditions. The new structured vulnerability description is
constructed by applying all the filters.

For the purpose of extraction we use two different parsers:
SAXparser (Simple API for XML) [13] is an event-driven,
serial-access mechanism for accessing XML documents.
Jsoup [14] is an open source Java library that provides an API
for extraction and management of HTML.

A. CVE name extraction

The vulnerabilities identified by OpenVas are grouped into
sets with the same NVT. The XML report created by the
scanner contains a lot of XML elements, many of which are
not relevant for our analysis (such as scanned port, names of
the tasks, etc.). This makes searching more complex.

The parser uses sets of rules to parse the XML tree by look-
ing for the relevant XML element (〈result〉, 〈nvt〉 and 〈cve〉).



Fig. 3. Example input for HTML parser.

For each 〈cve〉 element, the list of CVE names associated
with the same NVT is extracted. Finally, a single list with all
extracted CVEs is created.

B. HTML Parser

Each CVE name is submitted to the NVD search engine. Us-
ing the jsoup library, the vulnerability description is extracted
from NVD website HTML code and converted to plain text.
Figure 3 presents the example HTML source code for CVE-
2010-4091. Algorithm 1 shows the extraction process.

Algorithm 1: Extraction of Vulnerability Description from
the HTML Code
Require: list {list of items with CVEnames }

NVDaddress {NVD url address}
Ensure: text {plain text vulnerability description as a

String}
1: for item ∈ list do
2: if item from list is CVEName then
3: cvefile← create.file(CVEName.txt)
4: url← NVDaddress + CVEname
5: html← connect(url)
6: vulDetail← html.getElementByID(”contents”)
7: overview ← vulDetail.getElementByTag(”p”)
8: text← convertToText(overview)
9: else

10: print “no CVE name”
11: end if
12: end for

C. Filters

To better understand how the extraction process works, we
use the CVE-2010-4091 from Figure 1 as an example. Five fil-
ter groups are responsible for identifying distinct information
from a vulnerability description.

Infected software filters identify software (by name and
version) is involved in a particular vulnerability. Algorithm 2
presents how they work. The infected software filters from
Figure 1 are described in the phrase: “Adobe Reader and
Acrobat 10.x before 10.0.1, 9.x before 9.4.1, and 8.x before

8.2.6.” This extraction is very challenging due to the variety
of ways software can be specified, which results in very
complex rules. First, a name, e.g., “Adobe Reader”, is found
in the SoftwareList, and the occurrence of this name is
checked in the vulnerability description. The string after the
first occurrence of the name in the text is tokenized by the
whitespace characters. Next, the tokens are checked against the
rules for what follows (a number or a keyword). The order of
occurrence of keywords and numbers is also important. The
process iterates as long as software names are found in the
plain text description.

Algorithm 2: Extracting Infected Software
Require: text {vulnerability description as a String}

softwareList {file with softwareNames}
keyWord {word which supports extraction}

Ensure: list {list of InfectedSoftware}
1: for softwareName ∈ softwareList do
2: indexOfName← text.find(softwareName)
3: stringToLook ← text.substring(indexOfName)
4: tokens← tokenize(stringToLook)
5: for token ∈ tokens do
6: if token is number then
7: getNext(token)
8: if token is keyWord then
9: getNext(token)

10: else
11: list.append(infectedSoftware)
12: end if
13: else if ... then
14: ...
15: else
16: return list
17: end if
18: end for
19: end for

Attacker action pre-condition filters are responsible for
extracting information about the attacker’s required involve-
ment in exploiting a vulnerability (as shown in algorithm 3).
For Figure 1, the phrase: “a crafted PDF document that trig-
gers memory corruption” captures an attacker pre-condition;
the keyWordsStart is “via”, and keyWordsStop is a comma.
However, in some cases, parsing this description is not
straightforward; consider a phrase from CVE-2010-0483: “by
referencing a (1) local pathname, (2) UNC share pathname,
or (3) WebDAV server with a crafted .hlp file in the fourth
argument (aka helpfile argument) to the MsgBox function,”
the keyWordsStart is “by” but we cannot use the first comma
for a stop because we would lose the rest of the information
in the list.

System pre-condition filters find the system conditions
needed for a successful attack, e.g., the phrase “The ES-
cript.api plugin”. These filters work similarly to Algorithm 3
with a different set of keywords adapted to this specific



Algorithm 3: Extracting Attacker Action Pre-conditions
Require: text {vulnerability description as a String}

keyWordStart, keyWordStop {word or phrase which
support extraction}

Ensure: list {list of Attacker Action Pre-conditions }
1: scan text from left to right
2: indexToStart← text.find(keyWordStart)
3: if indexToStart ≥ 0 then
4: stringToLook ← text.substring(indexToStart)
5: indexToStop← stringToLook.find(keyWordStop)
6: if indexToStop ≥ 0 then
7: list← substring(keyWordStart, keyWordStop)
8: return list
9: end if

10: else
11: return null
12: end if

Algorithm 4: Extracting User Action Pre-conditions
Require: text {vulnerability description as a String}

keyWord {word or phrase which support extraction}
helpF ile {file with keyWords}

Ensure: userAction {user actions associated with exploit }
1: token← tokenize(text)
2: while text hasNext token do
3: get(token)
4: keyWordToCheck ← helpF ile.take(keyWord)
5: if token = keyWordToCheck then
6: return userAction
7: break
8: else
9: getNext(token)

10: end if
11: end while

extraction. As with the previous filters, the lack of consistency
in vulnerability descriptions leads to added complexity. For
instance, in (CVE-2008-3107) “Unspecified vulnerability in
the Virtual Machine in Sun Java Runtime Environment (JRE)”,
the keyword “in” is not useful as a cue; therefore we have to
keep checking contiguous word-tokens until the name of the
software is found. Then the extraction rule stops and returns
the whole string.

User action pre-condition filters identify conditions nec-
essary for the user’s involvement in exploiting a vulnerability.
In most cases, the descriptions do not include that information
explicitly. So, our system has to reason from what is there, i.e.,
check a set of conditions and infer (as shown in algorithm 4).
From our example, the phrase “open pdf document” will be
returned.

Post-condition filters extract the consequences of exploit-
ing a particular vulnerability. In our example, filters will
find the phrase “execute arbitrary code or cause a denial

Infected Software:
Adobe Reader 10.x before 10.0.1
Adobe Reader
Acrobat before 9.4.1
Acrobat 8.x before 8.2.6
Acrobat

Precondition:
attackerActions
a crafted PDF document that triggers

memory corruption
userActions
user opens pdf file

systemAtributes
The EScript.api plugin

Postcondition:
execute arbitrary code
cause a denial of service

(application crash)

Fig. 4. Structured CVE-2010-4091 description produced by our system

of service” which describes two ways that exploiting this
vulnerability affects the system.

The last step is writing the strings returned from filters into
a text file which forms the new structured VD. The output file
for our example is shown in Figure 4.

IV. EVALUATION

We evaluate the accuracy of our program by comparing its
output to a PAG previously built by experts. Our criteria for
this evaluation are: Does the output overlap with that found
in the PAG? What information is in the PAG but not in the
automatically generated description?

To construct the PAG, we identified vulnerabilities on a
computer running Microsoft Windows XP Professional SP3
with common configurations. Before collecting the data, the
system was secured and updated. Subsequently, the machine
was disconnected from the Internet, and automatic updates
were disabled. After three months, the machine was plugged
into the Internet and scanned. The 216 vulnerabilities were
identified among which 133 were critical, 74 severe and 9
moderate.

We chose a representative set of 11 vulnerabilities that
cover a variety of attack scenarios resulting in a compromised
system [7]. We constructed a PAG manually from the VDs for
the 11 vulnerabilities and for the computer used for the data
collection (as shown in Figure 5). To evaluate the automatic
construction of the PAG, we ran our program on this set and
compared the output with the PAG.

A. Description Accuracy

The output from the program is presented in Figure 4, and
the PAG representation is shown in figure 6. Starting from the
bottom of the PAG (Figure 5) on the highlighted path in Box1,
the infected software is represented by only one node “Adobe
Reader 9.4.1.” The program output lists five names of infected



Fig. 5. Custom made graph, PAG, that captures the interplay between these vulnerabilities, user actions, attacker strategies, and system activities; Box1
highlights the exploit path equivalent to figure 1 .

Infected Software:
Adobe Reader 9.4.1

Precondition:
attackerActions

Crafted PDF document
userActions

User searching for interesting content
User loads PDF document

systemAtributes
Memory Corruption Vulnerability

CVE-2010-4091
Postcondition:

arbitrary code execution
DoS

Fig. 6. CVE-2010-4091 description from PAG

software; one of them, “Adobe Reader,” generally corresponds
to “Adobe Reader 9.4.1” from the PAG. However, according
to our goal (extracting precise information), this is not quite
correct. The difference here occurred because the NVD entry
has been updated since the PAG was created.

The next node up in Box1 states the existence of the
vulnerability. The output further specifies the name of the
vulnerable element in the infected software: systemAtributes
of EScript.api. The PAG node “User searching for interesting
content” does not have any equivalent in the output file. In
this case, the output does not include this level of granularity.

The PAG node “User loads PDF document” corresponds
to userActions from the output: “user opens pdf file.” This

information is not provided explicitly in the vulnerability de-
scription from NVD, but was inferred. The PAG node “Crafted
PDF document” corresponds to “a crafted PDF document that
triggers memory corruption” in attackerActions. In this case,
the output delivers more information than is obtained from the
PAG. The “Postcondition” from the output is equivalent to the
top nodes in the PAG.

A similar evaluation is done for the rest of the vulner-
abilities; the results are presented in Table I. The system
has the best performance in the post-condition and infected
software columns because it extracts the newest information
directly from the website. The user action column shows the
worst system performance because the PAG offers a better
level of granularity than the system, which includes only
the user actions that are directly associated with exploiting
a vulnerability. The accuracy of the system strictly depends
on the quality of the rules for extraction and their ability to
infer what is implied.

V. CONCLUSIONS AND FUTURE WORK

The vulnerability descriptions which are available from
current VDs are not in a form that expedites security analyses,
especially when the system being analyzed is a single com-
puter. The descriptions do not directly provide the necessary
information about user, and attacker involvement and the
causal relationships need to be inferred. Moreover, the vari-
ability in the descriptions significantly complicates the process
of constructing a structured description. Yet, automatically
extracting the structured representation to build the PAG offers
the promise of significantly reducing errors (due to out of date
representations and missing information).



TABLE I
COMPARISON BETWEEN PAG AND SYSTEM; “O” OVERLAPS, “S”-AUTOMATIC EXTRACTION BY SYSTEM IS BETTER, “P”-MANUALLY BUILT PAG

PERFORMS BETTER, AND “(P,S)/G”- BETTER LEVEL OF GRANULARITY

CVE Name Post-condition infected software Precondition
Attacker Action System User Action

CVE-2010-4091 o s s s p/g
CVE-2009-2408 s s o o p
CVE-2010-0483 s s p s p
CVE-2010-3552 s s s o o
CVE-2009-3555 s s p s p
CVE-2010-0811 s s s s p/g
CVE-2009-1094 s s s s o
CVE-2008-3111 s s s o p/g
CVE-2008-3108 s s s o o
CVE-2008-3107 s s o o p/g
CVE-2010-0187 o s o p p/g

We demonstrated a method for automatically the extracting
vulnerabilities set and evaluated that method on 11 vulner-
abilities that form the core of a previously developed formal
model. The current version of our program is able to construct
descriptions of this set of actual vulnerabilities that are even
sometimes more complete than those in a hand-constructed
PAG. We should note that the program’s filters were developed
from our experience in building the PAG in the first place.

Thus, given the variability in vulnerability descriptions, the
program’s accuracy is likely to decrease as new vulnerability
descriptions are added. New patterns will need to be added to
the filters to accommodate the lack of consistency in the prose
for the vulnerability descriptions and the lack of explicitly
included information. Therefore, correct extraction requires an
expansion in the number of rules which grows quickly with
the number of cases. For real examples, with approximately
hundreds of vulnerabilities in one computer system, we need
to generate the extraction patterns automatically.

In our future work we plan to address most of problems
stated above. Especially, we will investigate the time in which
the extracting rules can be created and validated. We will also
reduce the human factors that can cause errors in the whole
process of extraction. To accomplish that, we are going to
use one of the existing information extraction systems with a
machine learning algorithm to generate extraction patterns.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 0905232. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling
modern network attacks and countermeasures using attack graphs,” in
Proc. of the 25th Annual Computer Security Applications Conference,
Honolulu, HI, USA, Dec. 2009, pp. 117–126.

[2] S. Jajodia, S. Noel, and B. OBerry, “Topological analysis of network
attack vulnerability,” in Managing Cyber Threats, ser. Massive Comput-
ing, vol. 5, 2003, pp. 247–266.

[3] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Proc. of the 15th IEEE workshop on Computer Security Foundations,
Cape Breton, Nova Scotia, Canada, June 2002, pp. 49–63.

[4] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using bayesian attack graphs,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 1, pp. 61–74, Jan. 2011.

[5] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” in Proc. of the IEEE Sym-
posium on Security and Privacy, Oakland, CA, USA, May 2002, pp.
273–284.

[6] L. Williams, R. Lippmann, and K. Ingols, “An interactive attack graph
cascade and reachability display,” in Proc. of the Workshop on Visual-
ization for Computer Security, Sacramento, CA, USA, Oct. 2007, pp.
221–236.

[7] M. Roberts, A. E. Howe, I. Ray, and M. Urbanska, “Using planning for
a personalized security agent,” in Workshop on Problem Solving using
Classical Planners in Working Notes of the 26th AAAI Conference on
Artificial Intelligence, Toronto, Ontario, Canada, July 2012.

[8] National Vulnerability Database, “NVD XML Feed Documentation,”
Available from http://nvd.nist.gov, NVD, http://nvd.nist.gov, September
2012.

[9] The Open Vulnerability Assessment System (OpenVAS), “Community
project carried out by volunteers,” Available from http://www.openvas.
org/, Sept. 2012.

[10] H.-T. Le, D. Subramanian, W.-J. Hsu, and P. K. K. Loh, “An empirical
property-based model for vulnerability analysis and evaluation,” in Proc.
of IEEE Asia-Pacific Services Computing Conference, Dec. 2009, pp.
40–45.

[11] H.-T. Le and P. K. K. Loh, “Using natural language tool to assist vprg
automated extraction from textual vulnerability description,” in Proc. of
IEEE Workshops of International Conference on Advanced Information
Networking and Applications, Mar. 2011, pp. 586 –592.

[12] Common Vulnerabilities and Exposure, “The dictionary of common
names (CVE identifiers),” http://cve.mitre.org/, Sept. 2012.

[13] Simple API for XML, “David megginson,” Available from http://www.
saxproject.org/, Sept. 2012.

[14] jsoup, “ Java HTML Parser,” Available from http://jsoup.org/, Sept.
2012.


